Extension results for slice regular functions of a quaternionic variable

نویسندگان

  • Fabrizio Colombo
  • Graziano Gentili
  • Irene Sabadini
  • Daniele Struppa
چکیده

In this paper we prove a new representation formula for slice regular functions, which shows that the value of a slice regular function f at a point q = x + yI can be recovered by the values of f at the points q + yJ and q + yK for any choice of imaginary units I, J,K. This result allows us to extend the known properties of slice regular functions defined on balls centered on the real axis to a much larger class of domains, called axially symmetric domains. We show, in particular, that axially symmetric domains play, for slice regular functions, the role played by domains of holomorphy for holomorphic functions. AMS Classification: 30G35.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The zero sets of slice regular functions and the open mapping theorem

A new class of regular quaternionic functions, defined by power series in a natural fashion, has been introduced in [11]. Several results of the theory recall the classical complex analysis, whereas other results reflect the peculiarity of the quaternionic structure. The recent [1] identified a larger class of domains, on which the study of regular functions is most natural and not limited to t...

متن کامل

A Cauchy kernel for slice regular functions

In this paper we show how to construct a regular, non commutative Cauchy kernel for slice regular quaternionic functions. We prove an (algebraic) representation formula for such functions, which leads to a new Cauchy formula. We find the expression of the derivatives of a regular function in terms of the powers of the Cauchy kernel, and we present several other consequent results. AMS Classific...

متن کامل

The open mapping theorem for regular quaternionic functions

The basic results of a new theory of regular functions of a quaternionic variable have been recently stated, following an idea of Cullen. In this paper we prove the minimum modulus principle and the open mapping theorem for regular functions. The proofs involve some peculiar geometric properties of such functions which are of independent interest.

متن کامل

Poles of regular quaternionic functions

This paper studies the singularities of Cullen-regular functions of one quaternionic variable, as defined in [7]. The quaternionic Laurent series prove to be Cullen-regular. The singularities of Cullenregular functions are thus classified as removable, essential or poles. The quaternionic analogues of meromorphic complex functions, called semiregular functions, turn out to be quotients of Culle...

متن کامل

Regular Moebius transformations of the space of quaternions

Let H be the real algebra of quaternions. The notion of regular function of a quaternionic variable recently presented by G. Gentili and D. C. Struppa developed into a quite rich theory. Several properties of regular quaternionic functions are analogous to those of holomorphic functions of one complex variable, although the diversity of the quaternionic setting introduces new phenomena. This pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009